Transient rRNA synthesis inhibition with CX-5461 is sufficient to elicit growth arrest and cell death in acute lymphoblastic leukemia cells.
نویسندگان
چکیده
Enhanced rRNA synthesis is a downstream effect of many of the signaling pathways that are aberrantly activated in cancer, such as the PI3K/mTOR and MAP kinase pathways. Recently, two new rRNA synthesis inhibitors have demonstrated therapeutic effects on cancer cells while sparing normal cells. One of them, CX-5461, is currently in phase 1 clinical trials for hematological malignancies. Here, we investigate the effectiveness of transient treatment with this drug on acute lymphoblastic leukemia cells. Our results show that short exposure to CX-5461 followed by drug washout is sufficient to induce persistent G2 cell-cycle arrest and irreversible commitment to cell death, in spite of rRNA synthesis returning to normal within 24 hours of drug washout. The magnitude of cell death after transient exposure is similar to continuous exposure, but the time to cell death is relatively delayed with transient exposure. In this report, we also investigate rational drug combinations that can potentiate the effect of continuous CX-5461 treatment. We show that the checkpoint abrogator UCN-01 can relieve CX-5461-induced G2 arrest and potentiate the cytotoxic effects of CX-5461. Finally, we show that ERK1/2 is activated upon CX-5461 treatment, and that pharmacological inhibition of MEK1/2 leads to enhanced cell death in combination with CX-5461. In summary, our results provide evidence for the effectiveness of CX-5461 pulse treatment, which may minimize drug related toxicity, and evidence for enhanced effectiveness of CX-5461 in combination with other targeted agents.
منابع مشابه
rRNA synthesis inhibitor, CX-5461, activates ATM/ATR pathway in acute lymphoblastic leukemia, arrests cells in G2 phase and induces apoptosis
Ribosome biogenesis is a fundamental cellular process and is elevated in cancer cells. As one of the most energy consuming cellular processes, it is highly regulated by signaling pathways in response to changing cellular conditions. Many of the regulators of this process are aberrantly activated in various cancers. Recently two novel rRNA synthesis inhibitors, CX-5461 and BMH-21, have been show...
متن کاملProteasome Inhibition by Carfilzomib Induced Apotosis and Autophagy in a T-cell Acute Lymphoblastic Leukemia Cell Line
T-cell acute lymphoblastic leukemia is an aggressive hematologic malignancy which is usuallyassociated with unfavorable prognosis particularly in patients with refractory/relapsed disease.Therefore, development of novel therapeutic strategies is highly required for improving theoutcome of these patients. Although there are several studies evaluating the efficacy of proteasome<...
متن کاملProteasome Inhibition by Carfilzomib Induced Apotosis and Autophagy in a T-cell Acute Lymphoblastic Leukemia Cell Line
T-cell acute lymphoblastic leukemia is an aggressive hematologic malignancy which is usuallyassociated with unfavorable prognosis particularly in patients with refractory/relapsed disease.Therefore, development of novel therapeutic strategies is highly required for improving theoutcome of these patients. Although there are several studies evaluating the efficacy of proteasome<...
متن کاملEffects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells
Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome p...
متن کاملTherapeutic Targeting of RNA Polymerase I With the Small-Molecule CX-5461 for Prevention of Arterial Injury-Induced Neointimal Hyperplasia.
OBJECTIVE RNA polymerase I (Pol I)-dependent rRNA synthesis is a determinant factor in ribosome biogenesis and thus cell proliferation. The importance of dysregulated Pol I activity in cardiovascular disease, however, has not been recognized. Here, we tested the hypothesis that specific inhibition of Pol I might prevent arterial injury-induced neointimal hyperplasia. APPROACH AND RESULTS CX-5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oncotarget
دوره 6 33 شماره
صفحات -
تاریخ انتشار 2015